

EMPIRICAL ANALYSIS OF INVESTOR UTILITIES IN INVESTMENT CHOICE

INSTITUTE OF ACTUARIES RESEARCH CONFERENCE 22 SEPTEMBER

John Livanas C.E.O. AMIST Super

Investor Utilities

- What is the form of the investor utility function? How do investor utilities combine to form an aggregate investor utility function, and does this create a mean-variance optimized universe?
- What are the factors that describe Investor utility? Are there differences according to personality or gender or education?
- How does investor utility change? Is there a way of describing the inertia of choice? What happens when an event triggers choice?

RESEARCH CONFERENCE Monday 22 September 2008 Amora Hotel, Sydney

Paper

- Section 1 proposed an experimental model that operates during instantaneous time and forced choice to estimate the E(U) for groups of investors.
- Section 2 presents the empirical results of aggregate E(U) for the experiment of forced choice and makes a surprising discovery.
- Section 3 extends analysis to test whether information is correctly interpreted whether E(r) is consistent, and whether we can identify sub-groups.
- Section 4 reviews the outcomes of a first-choice event.
- Section 5 analyses data of choices actually made over a 6 year period.
- Section 6 concludes.

Central Concept

- Investor Utilities drive the market equilibrium
 - Switching between portfolios with risk return characteristics
 - Attitudes and Beliefs to their behaviour
- Approach
 - Experiment of 236 Investors' behaviour and attitudes
 - Event Analysis
 - Quantitative Analysis of 4,000 investment decisions from 2002 to 2006

Section 1: The derivation of Investor E(U) and their aggregation.

- *E(U)* defines as some form of mean-variance optimality in MPT, as the interaction of investor utility with the tangent to the efficient frontier.
 - The optimization : $L = E(U_i)(q_1, q_2, ..., q_n) T(q_1, q_2, ..., q_n)$
- Define $E(U) = f[E(r), f(\sigma), f(\tau)]$
- Create a set of attributes with values:
 - q_i ∈ Expected Return E(r), Risk $f(\sigma)$, Time Horizon $f(\tau)$ },
- A portfolio is created by a random draw from each of the three attribute sets: P_x(q₁,q₂,q₃):{x₁...x_n} ∩ {y₁....y_n} ∩ {z₁....z_n}
- $[E(U)|\Phi,\Omega] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$

Stylised figure of experiment

Section 2: Experimental Construction

Return <i>E(r)</i>	Risk (Annualised Chance of a Negative Return) $f(\sigma)$	Time Horizon $f(\tau)$
3.9%	no chance	1 year
6.0 - 6.3%	13% chance	3 year
6.5 - 7.2%	20% chance	5 year
7.2 - 8.1%	25% chance	10 year
8.0 - 9.0%	33% chance	

	Numbers
Investors who had recently made a change in investment portfolio (Switchers)	186
Investors who had not made a change in investment portfolio (Non-Switchers)	50
TOTAL	236

- Choice-based conjoint analysis
 - State preference tasks
- 236 respondents
 - 16 Portfolio Pairs
- E.g.: Choose between
 - A 3.9%, 13% chance of a negative return, 1 year time horizon
 - B 8.0% to 9.0% return, 20% chance of a negative return, 2 year time horizon
- Random picks
 - Non optimal portfolios

Utilities generated using MLN

ariables			Utilities by	Responden	t Segment	
Attribute	Value	Description	All	18-34	35-54	55+
E(r)						
1	1	3.9%	-1.352	-1.491	-1.522	-1.172
1	2	6.0 - 6.3%	0.121	0.415	-0.052	0.165
1	3	6.5 - 7.2%	0.083	-0.308	0.142	0.221
1	4	7.2 - 8.1%	0.375	0.579	0.417	0.242
1	5	8.0 - 9.0%	0.774	0.805	1.016	0.544
f(τ)						
2	1	1 year	-0.008	-0.411	0.194	-0.072
2	2	3 year	0.009	0.013	0.140	-0.118
2	3	5 year	0.177	0.327	0.083	0.235
2	4	10 year	-0.178	0.071	-0.417	-0.045
f(σ)						
3	1	no chance	1.425	1.074	1.403	1.681
3	2	13% chance	0.295	0.347	0.323	0.269
3	3	20% chance	-0.153	-0.060	-0.147	-0.223
3	4	25% chance	-0.479	-0.331	-0.460	-0.563
3	5	33% chance	-1.087	-1.031	-1.120	-1.164
4	1	Neither	-1.36218	-2.13867	-1.45955	-1.0336
Respondents			236	42	101	93

- No significant difference for age
- Utilities can be added
 - Conjoint choice

Choice Modelling of Utilities: Return, Risk

Utility Curves

Choice Modelling of Utilities: Return, Risk

Utility Curves

Choice Modelling of Utilities: Time Horizon

Utility Curves

PORTFOLIO INDIFFERENCE CURVES – ISOUTILITIES

	pU of <i>f(σ)</i>	1.425	0.295	-0.153	-0.479	-1.087
pU of <i>E(r)</i>		0	13%	20%	25%	33%
-1.352	3.9%	0.07	-1.06	-1.51	-1.83	-2.44
0.121	6.0% - 6.3%	1.55	0.42	-0.03	-0.36	-0.97
0.083	6.5% - 7.2%	1.51	0.38	-0.07	-0.40	-1.00
0.375	7.3% - 8.0%	1.80	0.67	0.22	-0.10	-0.71
0.774	8.0% - 9.0%	2.20	1.07	0.62	0.29	-0.31

Arithmetic

$$E(U) = 2.6296 \ln(E(r)) + 3.2612 f(\sigma)^{2} - 8.5644 f(\sigma) + 8.6409$$

	pU of <i>f</i> (σ)	1.425	0.295	-0.153	-0.479	-1.087
pU of <i>E(r)</i>		0	13%	20%	25%	33%
-1.352	3.9%	0.11	-0.95	-1.47	-1.83	-2.36
0.121	6.0% - 6.3%	1.31	0.25	-0.27	-0.63	-1.16
0.083	6.5% - 7.2%	1.59	0.53	0.01	-0.35	-0.88
0.375	7.3% - 8.0%	1.88	0.82	0.30	-0.06	-0.59
0.774	8.0% - 9.0%	2.16	1.10	0.58	0.22	-0.31

Function

RESEARCH CONFERENCE Monday 22 September 2008 Amora Hotel, Sydney

Institute of Actuaries of Australia

RESEARCH CONFERENCE Monday 22 September 2008 Amora Hotel, Sydney

Implications

- Monotonic pU's for E(r) and f(σ) that hold for MRRT.
- Portfolios not necessarily Efficient
- Mechanism to drive market equilibrium

Section 3: Tests of Efficient Interpretation of Information Tests of the Influence of Demographics

- Section 2 did not prove investors make efficient decisions.
 - Investors, in making state preference choices, interpret the information of E(r); $f(\sigma)$ and $f(\tau)$ correctly; or
 - Only portfolios that exist on the Efficient Frontier are available in the market
- First test is a test of Φ: Investors expectations consistent with professionals who construct Efficient Portfolios
 - $= [E(U)|\Phi,\Omega] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$
- Assume Φ as the unfiltered and non-transformed information, we define Φ* as the probability density function of a group of investors such that:
 - Φi*=Pr[KTi. Φ | Ω] then
 - $-[E(U) | \Phi^*, \Omega] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$

EXPECTED RETURNS

Investors tend to overestimate Returns

Investor Expectations of Returns

NUMBER OF NEGATIVE RETURN YEARS OUT OF 10

Base: All members (n=236)

Investor Expectations of Risk

YEARS UNTIL MATURATION OF INVESTMENT

Base: All members (n=236)

Investor Expectations of Time Horizon

RESE.	SWITCHERS			epteml	per 2008	Am	N	ON-SW	TCHEF		strali	
	S	S	N	N				S	S	N	N	
ı	13%	3%	3%	6%	J		ı	18%	4%	12%	4%	J
I	7%	3%	2%	2%	Р		I	8%	4%	2%	2%	Р
E	11%	3%	E1%P	3%	Р		E	10%	2%	2%	4%	Р
E	19%	5%	4%	16%	J		E	16%	2%	4%	6%	J
	Т	F	F	Т				Т	F	F	Т	
	Education Levels						S	witchers %	Non-S	Switchers %		
	Some secondary school							4		8		
	Intermediate/School Certificate							11		16		
	Leav	Leaving Certificate/HSC						14 18				
	Trad	Trade qualification/Diploma						35 40				
	University Undergraduate Degree							19 12				

Personality and Demographics may matter

Conclusion

- Expectations showed a dispersion Pr(Φ*)
- Ω, the conditioning of E(U) based on demographics or other investor characteristics, debatable whether in aggregate, this characterizes the effects of the transform of Φ.
- $[E(U) | Pr[\Phi^*]] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$

Section 4: Event Studies

- $[E(U) | \Pr[\Phi^*]] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$
- For trade: $E(U_i^*) > E(U_i)$
- But require information change:

-
$$E(U_1) - E(U_i^*) = \frac{\partial E(U_1)}{\partial \Phi} = \frac{\partial E(U_1)}{\partial (E(r), \sigma, \tau)} \cdot \frac{\partial (E(r), \sigma, \tau)}{\partial \Phi}$$
- New orthogonal constraint B

- Is an event proof of change of information or some other constraint?

$$L = E(U_i)(q_1, q_2, ..., q_n) - \lambda T(q_1, q_2, ..., q_n) - \mu B(q_1, q_2, ..., q_n)$$

- Inertia
 - Bernoulli variable X, where
 - $E(X) = 1_{[E(U^*)-E(U)]>\theta}$ for trade to occur
 - Threshold θ that is set endogenously by each investor:

Dispersion of Pr[Φ] and Event study explain why only some choose

RESEARCH CONFERENCE Monday 22 September 2008 Amora Hotel, Sydney

-5 -

Institute of Actuaries of Australia

Information received by investors consistently interpreted; choices made were entirely reliant on removal of constraint (B).

$$L = E(U_i)(q_1, q_2, ...q_n) - \lambda T(q_1, q_2, ...q_n) - \mu B(q_1, q_2, ...q_n)$$
 holds

 Consistent Method of assigning values to 'Riskiness' for quantitative analysis

Portfolio Names	'High Growth'	'Trustee Selection'	'Divers- ified'	'Bal-anced'	'Capital Guarded'	'Cash'
Typical Assets held	85-90% Equities, Property	75% - 85% Equities, Property	65-70% Equities, Property	45-55% Equities, Property, with the remainder in Bonds, Cash	<15% Equities, Property, with the remainder in Bonds, Cash	Largely Cash with possibly some short- dated Bonds
Relative Risk 'Value'	+1	0	-1	-2	-3	-4

RESEARCH CONFERENCE Monday 22 September 2008 Amora Hotel, Sydney

Risk Shifts and Market Direction

Money Weighted Risk Shifts and Market Direction

Conclusion: Generalised Utility

- Firstly, the utility function of the aggregation of investors can be written in the form:
- $[E(U) | \Pr[\Phi^*]] = pU[aE(r)] + pU[bf(\sigma)] + pU[cf(\tau)]$
 - Where: $\Phi_i^* = Pr[KT_i \cdot \Phi \mid \Omega]$
 - Investors optimise to MRRT (Market Risk / Reward Theorem), don't necessarily choose efficient portfolios.
- Secondly, no evidence that demographic factors are conditions on aggregate utility.
- Thirdly, event studies show that trade occurs for reasons other than changes in information

$$-L = E(U_i)(q_1, q_2, ..., q_n) - \lambda T(q_1, q_2, ..., q_n) - \mu B(q_1, q_2, ..., q_n)$$

• $E(X) = 1_{[E(U^*)-E(U)]>\theta}$ presents inertia